Exploring Sound Design Tools: Pickup Coil Microphone

This post belongs to a series where I´m using unconventional microphones to get interesting sounds.
Please have a look at the other posts from the series:

Contact Microphone.
Hydrophone.


To finish up this three part series about unconventional microphones, here are my results while recording with a coil pickup.

This device records the inductance of electromagnetic waves that are generated by any electronic device, allowing you to get all sorts of buzz, fuzz and hum type of sounds. This type of microphone is similar to the one used in electric guitars.

I have been recording everything in sight: computers, hard drives, screens, appliances and all sorts of audio equipment. I was very surprised about the vast array of different sounds that you can get. Sometimes just changing the mic placement a few centimenters gives you a completely different sound, which seems to be a recurring theme throughout this unconventional microphones series.

So, here are some of the sounds I´ve got. You can individually download every sound via freesound.org or download the whole package through this link.

Hum & Buzz

These are probably the most common sounds you are going to get since any electronic device has a transformer that produces these kind of sounds.

As you can hear, different devices produce different timbres:

Hum & Fuzz Effects

These two are interesting. The first one was produced recording a microwave oven and moving the microphone back and forth to create these dopplery whooshes.

The second one was recorded on a blinking electric hob, creating this pulsating alarm-like pattern.

Data & Glitching

Hard drives, printers, phones and computers produce very cool and interesting sounds. It´s worth recording them while idling but also as they boot up.

Conclusions

I´m happy with the results and I´ve definitely got some cool sounds that I will be using in the future. These could be great for sci-fi, user interface or magical sound design. Thanks for stopping by,

Exploring Sound Design Tools: Hydrophone

This post belongs to a series where I´m using unconventional microphones to get interesting sounds.
Please have a look at the other posts from the series:

Contact Microphone.
Coil Pickup.


Continuing with the unconventional microphones theme, this time I've being fooling around with an hydrophone. As you may know, these are designed to better capture sound in water instead of in the air.

I tried recording water movements and props on all sorts of small containers, the kitchen sink and the bathtub. I quickly learned that is important to manage the cable properly since moving or touching it can be quite noisy, specially when trying to get quiet sounds. I was usually using one hand to keep the microphone and cable still and the other to perform the sound.

I also discovered that very small changes in mic placement usually produce vastly different results. On some occasions, just some centimetres were the difference between a close aggressive sound and a distant atmospheric one. I don't know if this is the case because water is denser than air and sound waves move 4.3 faster but it certainly something to keep in mind.

Finally, I have to say I was surprised by how clean the sounds were, although when processing very quiet stuff I did some RX cleaning here and there.

So, on with the recordings. You can individually download every sound via freesound.org or download the whole package through this link.

Bubbles

I first tried to get some bubble sounds. I used a plastic drinking straw to get the small ones and then tried sinking a bowl or a mug with some air inside to get bigger ones.

I tried some effervescent tablets too and got some nice fizzy sounds. 

Movements

Next, I tried some water movements. I quickly found out that submerging the microphone and trying to create water sounds with hand movements doesn't work really well since not a lot of sound energy reaches the mic.

So I tried to record them with the mic just on the surface of the water and got better results that you can hear in the first example below.

I also wanted to get some underwater movements and discovered that the easiest way was to move the microphone itself through a large mass of turbulent water. I did this in a filled bathtub (second recording below).

Steady Water Streams

For this sounds, I was trying to get long samples of water flowing that could be then used for underwater scenes.

To achieve this, you need some kind of water flow. In my case, since I didn't have access to a swimming pool or a jacuzzi, I just recorded the whole filling and emptying process of a kitchen sink and a bathtub.

While doing this, I experimented with different mic placements and amounts of water flowing in. You can get a vast array of result by just changing these two factors as you can hear in these examples:

Metal Kitchen Sink

Here are some other sounds I got in the kitchen sink.

Again, the draining sounds show how important mic placement is. Those changes in the sound intensity were produced by just getting closer or further away from the vortex.

Others

Here are some other random things I tried.

The first one is just me hitting a floating bowl with my finger. The resonance was captured with the mic underwater and close the bowl but not touching it. As the bowl filled more and more, the pitch changed in an interesting manner.

Lastly, the second recording below is how water directly impacting the hydrophone sounds. 

Conclusions

It was nice doing this recording session. I learned that mic placement is crucial when working with these microphones. Having an hydrophone is perhaps kind of a niche purchase, but it could be very useful if you need underwater sounds or want to record anything that involves too much water for conventional microphone to be safe.

Exploring Sound Design Tools: Contact Microphone

This post belongs to a series where I´m using unconventional microphones to get interesting sounds.
Please have a look at the other posts from the series:

Hydrophone.
Coil Pickup.


I bought a JrF contact microphone a while ago to do some experimenting and see the potential these mics have for sound design. Here is what I've discovered.

As you may know, a contact microphone records sound from vibrating solid materials instead of the air. This gives these microphones some unique and interesting sonic qualities. Since we are not capturing the ambience around the recording, results usually feel isolated, without an acoustic context. This can be a blessing, no need to worry about reverb or background noise but also may result in dull boring sounds. I quickly discovered than experimenting and trying different props, microphone positions and methods of producing the sound is key to achieve interesting results.

On the technical side, contact microphones need to be connected to a high impedance input in order to have a good frequency response. If you want to get into more detail about this and contact microphone usage in general this is the place to go.

Now that you know the deal, here are some of my recordings. You can individually download every sound via freesound.org or download the whole package through this link.

Window Glass

I just attached the microphone to a large window and try different things.

The first three sounds were recorded with just damp hands, I was trying different movements and was surprised with some of the results, although most of it is just regular squeaks. 

As you can hear, something so simple creates a surprising amount of low end some times.

Next, I tried to try using a milk frother applied on the glass. These recordings exemplify very well the possibilities of these microphones. Usually, it would be impossible to avoid the sound of the machine itself but with a contact mic we are getting the sound of the glass reacting to the vibration without any of the motor. 

The first two examples show this. The other two are the result of applying the forther to the cable of the mic itself resulting in some weird and tonal sounds.

 

Metal Oven Tray

Next, I tried to record some impacts on a metal oven tray. No thing too remarkable on this one but I got nice clean metal resonances that are always good to have.

On the first recording, you will hear that the three small impacts sound kind of distorted. This happens when the microphone is loose so it vibrates against the surface of the object you are recording. This can be useful if you want to get a dirty sound.

Bicycle

I thought the the wheel spokes would be interesting to record and the sound was surprisingly heavy.

Despite having roughly the same length, different spokes produced very different metal overtones. 

I can see these being use with some dissonance in a horror soundscape.

Electric razor

This razor doesn't have different speeds but I discovered that I can use my finger to slow down the motor and create some interesting power on and power off.

There is a nice amount bass, this could be use as layers for sci-fi or fantasy, weird machines.

For the third sample below I tried to create some malfunctioning engine sounds.

Electric Toothbrush

This one is quite dull but could be used as a layer for a servo door or robot. Also, it has a weird chewbacca kind of tone.

Drying Rack

Nice metal impacts with a lot of resonance. Again, surprised with the amount of bass here.

As you can hear, some of the sound have that distorted quality coming from the microphone being a little loose.

The ratchet/castle door sound was done by just striking the different metal rods with a wooden spoon. Quite cool.

Printer

Lastly, I tried attaching the mic to my printer. The result is not very interesting but it could be nice as layers for a robot or some mechanical thing.

Conclusions

As you can see, metallic objects are probably the most interesting ones to record as they resonate more but I'm sure there are many other creative things to try with a contact microphone that I will explore in the future. Thanks for reading.